2008 Mar Welti Ruth Rapid activation of phospholipase D (PLD), which hydrolyzes membrane lipids to generate phosphatidic acid (PA), occurs under various hyperosmotic conditions, including salinity and water deficiency. The Arabidopsis thaliana PLD family has 12 members, and the function of PLD activation in hyperosmotic stress responses has remained elusive. Here, we show that knockout (KO) and overexpression (OE) of previously uncharacterized PLDalpha3 alter plant response to salinity and water deficit. PLDalpha3 uses multiple phospholipids as substrates with distinguishable preferences, and alterations of PLDalpha3 result in changes in PA level and membrane lipid composition. PLDalpha3-KO plants display increased sensitivities to salinity and water deficiency and also tend to induce abscisic acid-responsive genes more readily than wild-type plants, whereas PLDalpha3-OE plants have decreased sensitivities. In addition, PLDalpha3-KO plants flower later than wild-type plants in slightly dry conditions, whereas PLDalpha3-OE plants flower earlier. These data suggest that PLDalpha3 positively mediates plant responses to hyperosmotic stresses and that increased PLDalpha3 expression and associated lipid changes promote root growth, flowering, and stress avoidance. 803-16 Hong Yueyun et al. 2008 Mar. Plant Cell 20(3):803-16. Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. 20 Wang Xuemin 3 Pan Xiangqing 18364466 Hong Yueyun