InterProInterPro Protein Domain record

NIF system FeS cluster assembly, NifU, C-terminal
http://metadb.riken.jp/db/SciNetS_rib124i/crib124s1rib124u1075i

NIF system FeS cluster assembly, NifU, C-terminal

InterPro Protein Domain record

description
  • <p>Iron-sulphur (FeS) clusters are important cofactors for numerous proteins involved in electron transfer, in redox and non-redox catalysis, in gene regulation, and as sensors of oxygen and iron. These functions depend on the various FeS cluster prosthetic groups, the most common being [2Fe-2S] and [4Fe-4S] [<cite idref="PUB00035635"/>]. FeS cluster assembly is a complex process involving the mobilisation of Fe and S atoms from storage sources, their assembly into [Fe-S] form, their transport to specific cellular locations, and their transfer to recipient apoproteins. So far, three FeS assembly machineries have been identified, which are capable of synthesising all types of [Fe-S] clusters: ISC (iron-sulphur cluster), SUF (sulphur assimilation), and NIF (nitrogen fixation) systems.</p><p>The ISC system is conserved in eubacteria and eukaryotes (mitochondria), and has broad specificity, targeting general FeS proteins [<cite idref="PUB00035636"/>, <cite idref="PUB00035637"/>]. It is encoded by the isc operon (iscRSUA-hscBA-fdx-iscX). IscS is a cysteine desulphurase, which obtains S from cysteine (converting it to alanine) and serves as a S donor for FeS cluster assembly. IscU and IscA act as scaffolds to accept S and Fe atoms, assembling clusters and transfering them to recipient apoproteins. HscA is a molecular chaperone and HscB is a co-chaperone. Fdx is a [2Fe-2S]-type ferredoxin. IscR is a transcription factor that regulates expression of the isc operon. IscX (also known as YfhJ) appears to interact with IscS and may function as an Fe donor during cluster assembly [<cite idref="PUB00035638"/>].</p> <p>The SUF system is an alternative pathway to the ISC system that operates under iron starvation and oxidative stress. It is found in eubacteria, archaea and eukaryotes (plastids). The SUF system is encoded by the suf operon (sufABCDSE), and the six encoded proteins are arranged into two complexes (SufSE and SufBCD) and one protein (SufA). SufS is a pyridoxal-phosphate (PLP) protein displaying cysteine desulphurase activity. SufE acts as a scaffold protein that accepts S from SufS and donates it to SufA [<cite idref="PUB00035639"/>]. SufC is an ATPase with an unorthodox ATP-binding cassette (ABC)-like component. No specific functions have been assigned to SufB and SufD. SufA is homologous to IscA [<cite idref="PUB00035640"/>], acting as a scaffold protein in which Fe and S atoms are assembled into [FeS] cluster forms, which can then easily be transferred to apoproteins targets.</p><p>In the NIF system, NifS and NifU are required for the formation of metalloclusters of nitrogenase in <taxon tax_id="354">Azotobacter vinelandii</taxon>, and other organisms, as well as in the maturation of other FeS proteins. Nitrogenase catalyses the fixation of nitrogen. It contains a complex cluster, the FeMo cofactor, which contains molybdenum, Fe and S. NifS is a cysteine desulphurase. NifU binds one Fe atom at its N-terminal, assembling an FeS cluster that is transferred to nitrogenase apoproteins [<cite idref="PUB00028014"/>]. Nif proteins involved in the formation of FeS clusters can also be found in organisms that do not fix nitrogen [<cite idref="PUB00003442"/>].</p><p>This entry represents the C-terminal of NifU and homologous proteins. NifU contains two domains: an N-terminal (<db_xref db="INTERPRO" dbkey="IPR002871"/>) and a C-terminal domain [<cite idref="PUB00005420"/>]. These domains exist either together or on different polypeptides, both domains being found in organisms that do not fix nitrogen (e.g. yeast), so they have a broader significance in the cell than nitrogen fixation. </p>
label
  • NIF system FeS cluster assembly, NifU, C-terminal
attributionURL
signatures_SMART
type
seeAlso
children
contains
PDB_structure
InterPro Protein Domain record
Os_RAPDB_Locus
Pfam-A