InterProInterPro Protein Domain record

Peptidase S8, subtilisin, His-active site
http://metadb.riken.jp/db/SciNetS_rib124i/crib124s1rib124u22398i

Peptidase S8, subtilisin, His-active site

InterPro Protein Domain record

description
  • <p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p><ul> <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li><li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases. </li></ul><p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p><p>Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes [<cite idref="PUB00003576"/>]. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence [<cite idref="PUB00003576"/>]. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases [<cite idref="PUB00003576"/>].</p><p>Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base [<cite idref="PUB00003576"/>]. The geometric orientations of the catalytic residues are similar between families, despite different protein folds [<cite idref="PUB00003576"/>]. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [<cite idref="PUB00003576"/>, <cite idref="PUB00000522"/>].</p><p>This entry represents serine peptidases belonging to the MEROPS peptidase family S8 (subtilisin, clan SB), containing the serine endopeptidase subtilisin and its homologues. Members of this family have a catalytic triad in the order Asp, His and Ser in the sequence, which is a different order to that of families S1, S9 and S10. The catalytic activity is provided by a charge relay system similar to that of the trypsin family of serine proteases but which evolved by independent convergent evolution. The sequence around the residues involved in the catalytic triad (Asp, Ser and His) are completely different from that of the analogous residues in the trypsin serine proteases and can be used as signatures specific to that category of proteases. </p><p>The signature of this entry contains a conserved sequence around the His active site. If a protein includes at least two of the three active site signatures, the probability of it being a serine protease from the subtilase family is 100%.</p>
label
  • Peptidase S8, subtilisin, His-active site
attributionURL
signatures_SMART
type
seeAlso
children
contains
PDB_structure
InterPro Protein Domain record