InterProInterPro Protein Domain record

Protein kinase, ATP binding site
http://metadb.riken.jp/db/SciNetS_rib124i/crib124s1rib124u17441i

Protein kinase, ATP binding site

InterPro Protein Domain record

description
  • <p>Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity [<cite idref="PUB00005115"/>]:</p><p> <ul> <li>Serine/threonine-protein kinases</li><li>Tyrosine-protein kinases</li><li>Dual specific protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)</li> </ul> </p><p>Protein kinase function has been evolutionarily conserved from <taxon tax_id="562">Escherichia coli</taxon> to human [<cite idref="PUB00020114"/>]. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation [<cite idref="PUB00015362"/>]. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [<cite idref="PUB00034898"/>], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [<cite idref="PUB00034899"/>].</p><p>Eukaryotic protein kinases [<cite idref="PUB00015293"/>, <cite idref="PUB00001530"/>, <cite idref="PUB00003568"/>, <cite idref="PUB00003569"/>, <cite idref="PUB00005115"/>] are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. There are a number of conserved regions in the catalytic domain of protein kinases.</p><p>This entry represents a conserved site, which is located in the N-terminal extremity of the catalytic domain, where there is a glycine-rich stretch of residues in the vicinity of a lysine residue. It is this lysine residue that has been shown to be involved in ATP binding.</p>
label
  • Protein kinase, ATP binding site
attributionURL
signatures_SMART
type
seeAlso
children
contains
PDB_structure
InterPro Protein Domain record